Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Barıṣ Tercan, ${ }^{\text {a }}$ Tuncer Hökelek, ${ }^{\text {a }}$ Orhan Büyükgüngör, ${ }^{\text {b }}$ Nuran Asmafiliz, ${ }^{\text {c }}$ Elif Ece Ilter ${ }^{\text {c }}$ and Zeynel Kılıç ${ }^{\text {c* }}$

${ }^{\mathrm{a}}$ Hacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey, ${ }^{\text {b }}$ Ondokuz Mayıs University, Department of Physics, Faculty of Arts and Sciences, TR-55139, Kurupelit-Samsun, Turkey, and ${ }^{\mathrm{c}}$ Ankara University, Department of Chemistry, 06100
Tandoğan, Ankara, Turkey
Correspondence e-mail:
merzifon@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.089$
Data-to-parameter ratio $=11.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

7,11-(Butane-1,4-diyldioxydi-o-phenylene-dimethylene)-6,6-dichloro-4,4-bis(pyrrolidin-$1-y \mathrm{l})-2 \lambda^{5}, 4 \lambda^{5}, 6 \lambda^{5}$-triphosphaza-1,3,5,7,11-pentaazaspiro[5.5]undeca-1,3,5-triene

The title compound, $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{P}_{3}$, is a phosphazene derivative with a bulky substituent attached through a spiro junction with two pyrrolidine rings. The six-membered $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{P}$ ring has a chair conformation, while the phosphazene ring has a slight envelope conformation. The two N atoms in the $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{P}$ ring are likely to be stereogenic.

Comment

During the last two decades, organophosphazene derivatives have attracted considerable interest for a variety of reasons. They are useful starting materials in producing polyorganophosphazene polymers with different side groups (Dez et al., 1999; Mathew et al., 2000). The stereogenic properties of phosphazene derivatives have also attracted much interest (Uslu et al., 2005; Beşli et al., 2003; Coles et al., 2002), as has their use in the design of highly selective anticancer (Baek et al., 2000), antibacterial (Konar et al., 2000) and anti-HIV (Brandt et al., 2001) agents. Moreover, they have found industrial applications in the production of inflammable textile fibers, advanced elastomers (Blonsky et al., 1986), rechargeable lithium batteries (Allcock, Napierala et al., 1996) and biomedical materials (Allcock \& Kwon, 1986) including synthetic bones (Greish et al., 2005).

(I)

Hexachlorocyclotriphosphazene, $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{6}$, is known as the 'standard' compound in the field of phosphazene chemistry. It has been used in the preparation of novel small organocyclophosphazenes and polyphosphazenes with different substituents (Allcock et al., 1992; Olshavsky \& Allcock, 1995). These substituents are very effective in determining the specific physical and chemical properties of polyorganophosphazenes (Allcock, Al-Shali et al., 1996; Dembek et al., 1991).

The reactions of $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{6}$ with bidentate ligands, such as diazacrown ethers, afford novel crypta-phosphazene deriva-

Received 9 June 2005 Accepted 10 June 2005 Online 17 June 2005

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted.
tives (İlter et al., 2004; Bilge et al., 2004). The crystal structure of $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{6}$ (Bullen, 1971) and a few of its derivatives with bulky N/O groups have been reported (Tercan, Hökelek, Dal et al., 2004; Tercan, Hökelek, Işıklan et al., 2004). Contrary to expectation, the reaction of 4,4,6,6-tetrachloro[butane- N, N^{\prime} -bis(1,4-oxybenzyl]-1,3,5,7,11-pentaaza-2,4,6-triphosphaza(6P^{V}) spiro[5.5] undeca-1,3,5-triene with an excess of pyrrolidine led to the formation of a geminal product, instead of nongeminal cis/trans ones (Lensink et al., 1984).

Fig. 1 shows the molecular structure of (I), with the atomic numbering scheme. The phosphazene ring (A) is not completely planar and adopts an envelope conformation with N 1 at the flap, with a puckering amplitude, Q_{T}, of 0.223 (1) \AA (Cremer \& Pople, 1975). The six-membered P1/N4/C1/C2/C3/ N5 ring (B) has a total puckering amplitude of 0.603 (2) \AA and a chair conformation.

In ring A, the $\mathrm{P}-\mathrm{N}$ bond lengths are in the range 1.559 (2)1.621 (2) \AA. The $\mathrm{P}-\mathrm{N}$ bonds of the phosphazene ring (Table 1) have double-bond character. The exocyclic P1-N4 [1.670 (2)] and P1 - N5 [1.665 (2) Å] bonds have single-bond character. In phosphazene derivatives, $\mathrm{P}-\mathrm{N}$ single- and double-bond lengths are generally in the ranges 1.628-1.691 and $1.571-1.604 \AA$, respectively (Allen et al., 1987). The shortness of the exocyclic $\mathrm{P}-\mathrm{N}$ bonds in (I) indicates that electron release has occurred from the lone pair of electrons of atoms N4 and N5 to the phosphazene ring. On the other hand, ring A has a pseudo-mirror plane running through the atoms N 1 and P 3 , as can be deduced from the torsion angles.

The sums of the bond angles around N4 and N5 are 337.3 and 339.8°, respectively, which establish that the nitrogen atoms have pyramidal geometry. Therefore, the N atoms may
have stereogenic configurations. In ring A, for the angles nearest to the bulky substituent, viz. endocyclic $\alpha(\mathrm{N} 1-\mathrm{P} 1-$ N3) $\left[116.5(1)^{\circ}\right]$, exocyclic $\alpha^{\prime}(\mathrm{N} 4-\mathrm{P} 1-\mathrm{N} 5) \quad\left[103.6(1)^{\circ}\right]$, endocyclic $\beta(\mathrm{P} 1-\mathrm{N} 1-\mathrm{P} 2)$ [122.0 (1) ${ }^{\circ}$, endocyclic $\gamma(\mathrm{N} 1-$ $\mathrm{P} 2-\mathrm{N} 2) \quad\left[114.0(1)^{\circ}\right]$ and exocyclic $\gamma^{\prime}(\mathrm{N} 6-\mathrm{P} 2-\mathrm{N} 7)$ [103.3 (2) $)^{\circ}$, α and γ are decreased, and α^{\prime}, β and γ^{\prime} are increased with increasing electron supply and repulsions of the substituents relative to the standard compound $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{6}$ (Bullen, 1971). The bond angles in ring A are comparable to the corresponding ones reported for $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{6}$, viz. α [118.3 (2) ${ }^{\circ}$], $\alpha^{\prime}\left[101.2(1)^{\circ}\right]$ and β [121.4 (3) ${ }^{\circ}$].

The macrocyclic ring of (I) (Fig. 1) contains two ether O and two N atoms. The least-squares plane defined by atoms O 1 , O2, N4 and N5 has a maximum deviation of 0.108 (1) \AA for atom N4. For the macrocyclic ring, the total puckering amplitude is $Q_{\mathrm{T}}=2.456$ (2) \AA. The conformation of the macrocyclic ring is influenced by the planarity of the two benzo-fused $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ systems.

Experimental

A solution of 4,4,6,6-tetrachloro[butane- N, N^{\prime}-bis(1,4-oxybenzyl]-1,3,5,7,11-pentaaza-2,4,6-triphosphaza(6- $\left.\mathrm{P}^{\mathrm{V}}\right)$ spiro[5.5]undeca-1,3,5triene ($3.00 \mathrm{~g}, 4.38 \mathrm{mmol}$) in dry tetrahydrofuran (THF, 150 ml) was added slowly to a solution of pyrrolidine $(3.74 \mathrm{~g}, 52.60 \mathrm{mmol})$ with stirring and refluxing for 25 h under an argon atmosphere. THF was evaporated under reduced pressure and the residue was dissolved in benzene (200 ml), then an excess amount of triethylamine was added to the solution. The solvent was evaporated after refluxing for 3 h and the resulting product was purified by column chromatography [eluent THF/toluene $(1: 3)$, silica gel $(60 \mathrm{~g})$], and crystallized from n heptane (yield $1.8 \mathrm{~g}, 60 \%$; m.p. 468 K).

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{P}_{3}$ $M_{r}=684.51$
Monoclinic, $P 2_{\mathrm{h}} / c$
$a=9.2618$ (4) А
$b=23.6323$ (8) \AA
$c=15.1606$ (7) \AA
$\beta=103.023$ (4) ${ }^{\circ}$
$V=3233.0(2) \AA^{3}$
$Z=4$

Data collection

STOE IPDS-II diffractometer φ scans
Absorption correction: integration (X-RED; Stoe \& Cie, 2002)
$T_{\text {min }}=0.841, T_{\text {max }}=0.886$
45677 measured reflections
6351 independent reflections

Refinement

[^0]$$
D_{x}=1.406 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 44825 reflections
$\theta=1.4-26.1^{\circ}$
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colorless
$0.46 \times 0.39 \times 0.32 \mathrm{~mm}$

5232 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.069$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-29 \rightarrow 29$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.053 P)^{2} \\
&+0.4055 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

P1-N1	$1.5922(14)$	P2-N2	$1.6206(15)$
P1-N3	$1.6020(15)$	$\mathrm{P} 2-\mathrm{N} 6$	$1.6280(15)$
P1-N5	$1.6654(15)$	$\mathrm{P} 2-\mathrm{N} 7$	$1.6430(16)$
P1-N4	$1.6701(15)$	$\mathrm{P} 3-\mathrm{N} 2$	$1.5594(15)$
P2-N1	$1.5957(15)$	$\mathrm{P} 3-\mathrm{N} 3$	$1.5720(15)$
N1-P1-N3	$116.51(8)$	$\mathrm{N} 2-\mathrm{P} 2-\mathrm{N} 6$	$111.95(8)$
N1-P1-N5	$109.50(8)$	$\mathrm{N} 1-\mathrm{P} 2-\mathrm{N} 7$	$115.61(8)$
N3-P1-N5	$109.05(8)$	$\mathrm{N} 2-\mathrm{P} 2-\mathrm{N} 7$	$105.02(8)$
N1-P1-N4	$109.49(8)$	$\mathrm{N} 6-\mathrm{P} 2-\mathrm{N} 7$	$103.26(8)$
N3-P1-N4	$107.94(7)$	$\mathrm{N} 2-\mathrm{P} 3-\mathrm{N} 3$	$121.89(8)$
N5-P1-N4	$103.56(7)$	$\mathrm{P} 1-\mathrm{N} 1-\mathrm{P} 2$	$122.01(9)$
N1-P2-N2	$113.99(8)$	$\mathrm{P} 3-\mathrm{N} 2-\mathrm{P} 2$	$120.89(9)$
N1-P2-N6	$106.60(8)$	$\mathrm{P} 3-\mathrm{N} 3-\mathrm{P} 1$	$118.86(9)$
N3-P1-N1-P2	$27.80(14)$	$\mathrm{C} 14-\mathrm{O} 2-\mathrm{C} 15-\mathrm{C} 20$	$179.43(16)$
N1-P1-N3-P3	$-15.39(14)$	$\mathrm{P} 1-\mathrm{N} 4-\mathrm{C} 21-\mathrm{C} 20$	$-169.46(12)$
N5-P1-N4-C21	$177.97(11)$	$\mathrm{P} 1-\mathrm{N} 5-\mathrm{C} 4-\mathrm{C} 5$	$-91.54(17)$
N4-P1-N5-C4	$-71.99(13)$	$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 5$	$124.03(18)$
N2-P2-N1-P1	$-27.19(14)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{O} 1$	$1.1(2)$
N1-P2-N2-P3	$15.20(14)$	$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$59.39(19)$
N3-P3-N2-P2	$-4.93(16)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$-169.53(16)$
N2-P3-N3-P1	$4.81(15)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{O} 2$	$57.7(2)$
C11-O1-C10-C5	$-146.35(16)$	$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 15-\mathrm{O} 2$	$-5.6(2)$
C10-O1-C11-C12	$143.66(15)$	$\mathrm{C} 15-\mathrm{C} 20-\mathrm{C} 21-\mathrm{N} 4$	$75.2(2)$
C15-O2-C14-C13	$164.11(16)$		

H atoms were located in a difference synthesis and refined isotropically $\left[\mathrm{C}-\mathrm{H}=0.93(2)-1.11\right.$ (3) \AA and $U_{\text {iso }}(\mathrm{H})=0.021(5)-$ $\left.0.082(10) \AA^{2}{ }^{2}\right]$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund) and Hacettepe University, Scientific Research Unit (grant No. 0202602 002).

References

Allcock, H. R., Al-Shali, S., Ngo, D. C., Visscher, K. B. \& Parvez, M. (1996). J. Chem. Soc. Dalton Trans. pp. 2549-2559.
Allcock, H. R., Dembek, A. A., Mang, M. N., Riding, G. H., Parvez, M. \& Visscher, K. B. (1992). Inorg. Chem. 31, 2734-2739.
Allcock, H. R. \& Kwon, S. (1986). Macromolecules, 19, 1502-1508.
Allcock, H. R., Napierala, M. E., Cameron, C. G. \& O’Connor, S. J. M. (1996). Macromolecules, 29, 1951-1956.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Baek, H., Cho, Y., Lee, C. O., Sohn, Y. S. (2000). Anti-Cancer Drugs, 11, 715725.

Beşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Shaw, R. A., Çiftçi, G. Y., Yeşilot, S. (2003). J. Am. Chem. Soc. 125, 49434950.

Bilge, S., Kılıç, Z., Çaylak, N. \& Hökelek, T. (2004). J. Mol. Struct. 707, 139146.

Blonsky, P. M., Shriver, D. F., Austin P. \& Allcock, H. R. (1986). Solid State Ionics, 18, 258-264.
Brandt, K., Kruszynski, R., Bartczak, T. J., Porwolik-Czomperlik, I. (2001). Inorg. Chim. Acta, 322, 138-144.
Bullen, G. J. (1971). J. Chem. Soc. A, pp. 1450-1453.
Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Mayer, T. A., Shaw, R. A., Yenilmez, G. (2002). J. Chem. Soc. Dalton Trans. pp. 365370.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-13548.
Dembek, A. A., Kim, C., Allcock, H. R., Devine, R. L. S., Shi, Y., Steiner, W. H. \& Spangler, C. W. (1991). Macromolecules, 24, 1000-1010.

Dez, I., Mitjaville, J. L., Grützmacher, H., Gramlich, V. \& de Jaeger, R. (1999). Eur. J. Inorg. Chem. pp. 1673-1684.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Greish, Y. E., Bender, J. D., Lakshmi, S., Brown, P. W., Allcock, H. R., Laurencin C. T. (2005). Biomaterials, 26, 1-9.
. Ilter, E. E., Çaylak, N., Işıklan, M., Asmafiliz, N., Kılıç, Z. \& Hökelek, T. (2004). J. Mol. Struct. 697, 119-129.

Konar, V., Yılmaz, Ö., Öztürk, A. • I, Kırbağ, S., Arslan, M. (2000). Bioorg. Chem. 28, 214-225.
Lensink, C., de Ruiter, B., van de Grampel, J. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1521-1526.
Mathew, D., Nair, C. P. R. \& Ninan, K. N (2000). Polym. Int. 49, 48-56.
Olshavsky, M. A. \& Allcock, H. R. (1995). Macrocycles, 28, 6188-6197.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Tercan, B., Hökelek, T., Dal, H., Süzen, Y. \& Kılıç, Z. (2004). Acta Cryst. C60, o639-o641.
Tercan, B., Hökelek, T., Işıklan, M., İlter, E. E. \& Kılıç, Z. (2004). Acta Cryst. E60, o971-o973.
Uslu, A., Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Shaw, R. A. (2005). Eur. J. Inorg. Chem. pp. 1042-1047.

[^0]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
 $w R\left(F^{2}\right)=0.089$
 $S=1.04$
 6351 reflections
 556 parameters
 All H -atom parameters refined

